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Abstract

This paper presents the use of Multivariate Regression Trees (MRTS) to analyze Multiobjective
Evolutionary Algorithm (MOEA) tradeoff sets generated from a long-term water utility planning
problem. MOEAs produce large sets of non-dominated solutions, where each solution represents
an observation of how multiple predictor variables (decision levers) impact performance in
multiple response variables (objectives). Because they explicitly accommodate multiple response
variables, MRTs can preserve the relationships between objectives revealed through MOEA-
assisted optimization. We generated MRTs for two tradeoff sets that resulted from optimizing the
Eldorado Utility planning problem under two climate change scenarios. A single MRT helped
identify the subset of core planning decisions that led to preferred performance and demonstrated
how decision preferences impacted performance in different objectives. Comparing MRTs from
two scenarios revealed decisions that performed well across scenarios. The systematic and
repeatable MRT approach can help water managers understand large, high-dimensional tradeoff

sets and prompt additional promising analyses.

Highlights
» MOEA tradeoff sets contain information that can be hard to extract heuristically

* MRTs offer an unbiased, repeatable method to analyze MOEA tradeoff sets

* MRTs can reveal core planning decisions that perform well across future scenarios
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1 Introduction

Many academic studies and, recently, several redidvapplications of Multiobjective
Evolutionary Algorithms (MOEAS) have established thol’s ability to produce innovative
solutions and valuable performance information alater resources planning problems (CSU,
2017; Maier et al., 2014; Reed et al., 2013). Tglointelligent search and evaluation of
thousands of potential portfolios, MOEAs produciesuof nondominated alternatives that
explicitly elucidate relationships between conitigt planning objectives and the complex
interactions among decisions that affect thoseatibjes (i.e. tradeoff sets). Thorough analysis of
the information contained in such tradeoff setsegally requires working with hundreds or
thousands of solutions and considering many pedoo®a and decision characteristics, or
dimensions, simultaneously. Interpreting this magie and complexity of relational

information is difficult, so it is important to delop tools that facilitate water managers’ ability
to understand causes, effects, and trends in dasisind performance that are embedded in the

results generated by MOEAs.

To date, Water Resources Systems Analysis (WRS#areh applications of MOEAS have
mostly relied on parallel axis plots and/or glypbtp (Kasprzyk et al., 2009; Kollat & Reed,
2007; Matrosov et al., 2015; Smith et al., 2016Lartesian plots (Mortazavi et al., 2012; Wu et
al., 2017) for insights, performing relatively sedfive assessments on the tradeoffs to frame
assertions of different performance priorities. [Bative explorations are useful for gaining
general familiarity with the tradeoffs and identify individual portfolios of interest, but they

may not result in insights about the fundamentatesy dynamics that drive performance.

The volume of solutions and large numbers of dessand objectives that make MOEA
tradeoff sets difficult to analyze heuristicallgalmake them good candidates for employing
feature selection — the process of systematicatlycing the dimensionality of a data set by
distinguishing the most sensitive features fronséhthat are noisy, redundant, or irrelevant (Liu
et al., 2010), thus identifying fundamental sysfmaperties. Since the 1990s, feature selection
has been used as a pre-processing step to impubgeguent data mining applications in a wide
range of fields such as bioinformatics (Saeys.e2807), satellite imagery classification (Jain
and Zongker, 1997), social network exploitationlgsia (Zheleva and Getoor, 2009), and

financial fraud detection (Ravisankar et al., 2011)



Feature selection has been applied specificalf@EA tradeoff sets in a number of fields,
though the term is not common in such studieshikdontext, various feature selection
approaches are presented as the main data mir@mg @wot preparation for data mining) and
used for the purpose of “knowledge discovery”. Bamdet al (2017) provide a thorough review
of this literature; here we will focus on work thets employed regression trees, which are the

specific type of feature selection/data mining roétim which we are interested.

Regression tree models are generated by recurgeeljioning data into two mutually-

exclusive sets in order to sort the data into gsdbhat have similar attributes. They are a popular
method of feature selection because they are \v@satile and easy to interpret. The partitioning
process does not require or assume any specifribditons within the data, and it can uncover
hidden structures and interactions between hieichnd nonlinear variables (Prasad et al.,
2006; Verbyla, 1987). Among many predictor variablde method can determine which have
the greatest influence on response (Lawrence amghtyY2001). The binary rules are easy to
understand for users who do not have expertisatistcs, and the tree structure itself is an

intuitive way to visualize a model.

The few studies that have used regression tregsrform feature selection on MOEA tradeoff
sets have been limited to univariate regressiastrehich relate a single objective (response) to
multiple decision levers (predictors). Sugimuralgt2010) demonstrated regression tree analysis
on the design of a centrifugal impeller. The cdadysoptimized 2 objectives using 16 design
parameters and then generated a regression treadbrobjective individually. Dudas et al
(2011) optimized process rules for a 3-objectiv@autive production line system using 22
variables, and like Sugimura et al, created a s¢paree for each objective. In another study,
Dudas et al optimized investments in a productioa lising three objectives and nine decisions,
this time eliciting a preferred performance regdiam decision makers and generating trees
based on different methods of measuring solutispatial relationships to the region (2014).
While these univariate regression trees providéulgdgormation, they either separate or
collapse the relationships between the objectiaed,thus do not capitalize on one of the
primary benefits of using an MOEA.

The Multivariate Regression Tree (MRT) was devetbfzerelate predictor variables to multiple

response variables while maintaining the individtreracteristics of the responses (De’Ath,
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2002). It originated in the field of ecology andsadesigned to be able to relate populations of
multiple species to a number of independent enuemtal conditions. Importantly, MRTs do
not make any assumptions about the underlyingioelstips between the response variables.
MRTs have been used previously for feature selecfar example by Questier et al (2005) to
analyze how the presence or absence of variousicasmredicts certain types of smells.
However, to our knowledge, they have not been adpb feature selection using an MOEA
tradeoff set. The versatility of the method (iteere is no requirement of any sort of data
structure) suggests it can be successfully usaddtyze the complex dynamics found in such

data.

This study makes two contributions. First, it baileh previous efforts to perform feature
selection on MOEA tradeoff sets using regressieagiby newly applying MRTSs to the task.
Second, it employs feature selection to analyzéetf sets generated from optimizing a
complex water supply system. By applying MRTs toray-term water resources planning study
performed using the Eldorado Utility Planning Mgdeé demonstrate how the method can
facilitate and expand on heuristically-derived gigg by extracting latent information about how
specific combinations of decisions impact differgmtes of performance, and about which
decisions are likely to perform well in a wide rangf potential futures. Such insights may either
not be discernable from heuristic analyses alontheoprocess of discovering them may require

applying preferences that are not agreeable tmaalies involved in developing a plan.

In the following section we present information abour methods: MOEA tradeoff sets and
regression trees. We then give background on ther&dlo Utility case study used in the
optimization. Next are the regression tree restdtiywed by discussion of their implications for
practical applications in water resources planm@ing also for future research. The last section

offers concluding remarks.

2 Methods
2.1 MOEA tradeoff sets

Multiobjective Evolutionary Algorithms (MOEAS) agesearch technology used to efficiently
generate and evaluate alternative solutions t@systvhose conflicting performance objectives

are impacted by many decisions that exhibit complexactions (Reed et al., 2013). In the



context of long-term water supply planning, the MOiGtelligently designs and tests thousands
of different combinations (or portfolios) of de@ss such as reservoir sizes and conservation
levels to optimize performance in objectives suelmaximizing storage reliability and
minimizing frequency of water-use restrictions. Whatempting to optimize multiple

conflicting objectives, improvement in one objeetrequires sacrificing performance in another,
so there are tradeoffs. During optimization, the B#Oremoves from the preferred group any
portfolio whose performance is worse than anotloetfg@io in all objectives; that is, the
dominated portfolios are removed. The end product of MOEAisted optimization is a set of
nondominated planning portfolios that quantitatyvetharacterize the performance tradeoffs of a

system.

The nondominated tradeoff set is valuable becduspiesents the system information learned
by the MOEA as it refines combinations of decidiewers to achieve better results in the
objectives. Each portfolio within the MOEA tradesé#t is an observation of how multiple
predictor variables (decision levers) affect aeyss performance in multiple response variables
(objectives). Framing the dataset in this way naigg the use of MRTSs to help extract the

relational information contained in the tradeoffs.

2.2 Multivariate Regression Trees (MRTS)

MRTs are an extension of the univariate Classificeaind Regression Tree (CART) algorithm
(Breiman et al., 1984). (Trees generated from categ data are termed classification trees; we
are working with quantitative data and, as such,limit our description to regression trees.)
CART has been used for feature selection in se¥ietds (Chebrolu et al., 2004; Gomez-Chova
et al., 2003) and also for other data mining puegas WRSA (Bryant and Lempert, 2010;
Kwakkel and Jaxa-Rozen, 2016). For CART, the séeokcalculations presented below would
be performed on values of a single response variftnl MRTSs, they are instead applied to the
geometric centroid defined by the summed Euclidigtances to the means of all response
variables. To convert from MRT to CART, one onlyeds to remove the innermost summation

from Equations 1 through 3 found in Section 2.2.1.

Note that because objectives incorporated into M@B#mization often measure very different
types of quantities, all objective values needdstaled before an MRT is generated to prevent

objectives with large units and ranges from donmnggathe splitting. This preserves the equal
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weighting of objectives, which is a core conceptt tthnderpins the value of MOEAs. Though
there are several ways of standardizing or normnglidata, we recommend scaling the
observations for each objective to a range of D because this approach does not distort within-
objective distribution or across-objective relaships. Decision lever values do not need to be
scaled.

2.2.1 MRT algorithm

The steps of the MRT algorithm will be presenteteims of an MOEA tradeoff set: portfolios
are observations, decision variables are the pdicand objectives are the responses.

A. Calculate the error of the full data set at the ramle:

Equation 1
N ]
_ 2
Eroor = z (yij - yj(N))
i=1

i=1j=1

WhereN is the number of portfolios in the tradeoff geis the number of objectives;; is a

portfolio’s value of objectivg, andyy, is the mean of all values of objectijie

B. For every split between values in every decisimedgesum the error (impurity)
within and across each of the two child nodeswmatld result from splitting the data

by that decision lever value:

Equation 2

n J
Egspiie = z Z()’ij(k) — Vit)?

2
k=11i=1 j=1

wherey;; ) is a portfolio’s value of objectivg ;) is the child node’s mean value of objective

j, k is the child node formed by the split, ands the number of observations in child nade

C. Split the parent node using the decision levenaide from Step B that resulted in

the smallest value df,,;;;.



D. Repeat Steps B and C for each child node untika-sigecified stopping criterion is
met. When the criterion is met, splitting termirsaéed a node becomes a leaf.
Stopping criterion determines the number of leguesthe size of the tree). Within-
leaf error is defined as:

Equation 3

n J
Ejear = Z Z(yij(k) — ¥Vit)®
i=1

j=1

The explanatory power of a tree is traditionallptcaed by its relative error; this value
represents how much of the root error was not vesidby sorting the portfolios via recursive

splits in decision variables:

Equation 4

L

. E

=1 "leaf
RE e =

ET‘OOt

Wherel is the total number of leaves on the tnggy, is a portfolio’s value of objectivg y;;

is the leaf’s mean value of objectiyjeandn is the number of observations in léaf

Though it offers the same technical informatiomedative tree error, we propose use of the
complementary “explained variance” quantity (Canr2#i2) to summarize the overall

explanatory power of the tree:
Equation 5
EV(%) = (1 — REtree) X 100

Focusing on minimizing “error” is a misleading caeterization in terms of understanding the

tree’s value. As such, EV will be reported for MRiighis study.

2.2.2 Cross validation

The cross validation technique commonly used wlesreting MRTs (which is also used in

this study) is 10-fold cross validation. For ea@tid”, a model is trained on 90% of the data and



tested by calculating thRE,,.. that results once the withheld 10% are placeteir respective
leaves. The average of the RB,,.. values is reported back as the cross validatadivelerror
(CVRE). This process is undertaken for every paaésize of tree to enable comparison

betweemRE;,.. and CVRE, which can guide users in determiningnogittree size.

2.2.3 MRT selection

In any statistical modeling application, steps nhestaken to ensure that the model
appropriately represents the underlying data teitent that the method can do so
meaningfully. For regression trees, it is also inguat to ensure that the structure of the tree is
understandable for users, so the most appropresgentll need to balance descriptive power and
interpretability. This can be achieved by usiranstard cross validation procedures and/or
knowledge of the data to prune the tree (Murphy,2200ne common way of determining the
best tree is by examining the progression of itSE\As size increases. If CVRE stagnates or
starts to increase, the model is said to be “oWetfiere is no gain, or potentially a loss, of
explanatory power as the tree increases in contgldrisuch cases, a rule of thumb proposed
by Breiman et al (1984) is to choose the smaltest that achieves the minimum CVRE plus one
standard error (the Min + 1SE rule). However, rbtlata sets exhibit divergent error behavior.
Other approaches to determining appropriate teeisclude requiring a minimum number of
observations per node, defining the minimum amaof@ietror reduction that must be met for a

split to proceed, and pre-specifying tree sizeepti.

2.2.4 Example MRT

To preview the conceptual and visual results okegating an MRT, we present a simple

example problem and tree. The water utility forengng city has two objectives: to minimize
frequency of imposing annual water-use restrictmmgustomers and also minimize the amount
of expensive and environmentally-disruptive newage it has to build to meet increasing
demands. The decision levers available to theaciyto build (or not build) a reservoir with up

to 100 million cubic meter (MCM) of capacity, aralénact (or not enact) conservation measures
that would reduce demand by 20% (a binary deciglonno conservation, 1 = conservation

enacted). Figure 1 represents how an MRT genefatehdis problem might look.



Example Multivariate Regression Tree
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Figure 1. Example MRT. Red text and objects denote MRT cotscepterms that are not found
on actual MRT plots but are provided here for tjarhll values are hypothetical and designed
to explain MRT features.

The MRT has two splits and three leaves. Eachiseadmprised of a set of portfolios whose
range of performance in each of the two planningalves is characterized by a boxplot. At the
root, the boxplot for each objective would spanghgre plotting range (included in Figure 1 for
demonstration purposes). Each of the three leaa®s ldlifferent configuration of performance
tradeoffs across the two objectives because the MiRdes the tradeoff set such that the

variance in performance is reduced in one or mbjeatives.

The MRT shows how many portfolios are in each &af the error remaining within each leaf,
calculated as the summed differences between eatiblp’s actual performances in each
objective compared to the mean performances in eljective of all in-leaf portfolios (see
Equation 3). While “error” is appropriate in terwisthe quantity calculated, it is actually just an
indication of spread around the means and doemdicate that portfolios are incorrectly placed
in the leaf. Leaves with larger numbers of portiektend to have higher error because there are
more errors to sum, and leaves with a large digiob of performance in one or more objectives

(i.e. large boxplot ranges) will also have highetaaf error. (Leaf 1 has the fewest portfolios
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and tightest ranges, so in-leaf error is smallestf 3 has the most portfolios and larger ranges

for both objectives, so it has higher error.)

The branches of the tree are formed by splittimgpbrtfolios based on their values of the two
decision levers. The first split is based on resiersize. This indicates that reservoir size
explains the most variance across all objectivesaf IL shows that the larger reservoirs require
larger volume of new storage, as indicated by #igtt of the teal boxplot, and also that a larger
reservoir will result in relatively fewer yearsmafstrictions, as indicated by the low placement of
the light purple boxplot. Portfolios with reserwiess than 50 MCM in capacity (the right-hand
tree branch) are further split based on whethes@mation was enacted, and that distinction
leads to two different ranges for years in restictas indicated by the different heights of the

light purple boxplots in leaves 2 and 3.

The EV value at the bottom of the plot indicates/lveell the tree was able to organize the set of
portfolios into groups of similar performance claegistics. This tree was able to explain 75%
of the variance using two splits (the sum of eacnoss leaves is 25 and the root error is 100).
There is no threshold of EV that indicates wheth&ee is valid or useful; if a user sees value in
the percentage of variance explained, then thedregluable assuming the tree was
appropriately pruned using cross-validation craennd problem knowledge. Furthermore, it
would not actually be desirable to generate attraeexplained 100% of the variance for two
reasons: it would be unwieldy, and it would elintenthe opportunity to use human reasoning to
explore flexibility in the decision space as opmbterelying on the MRT algorithm to

exhaustively organize the portfolios.

2.2.5 Analyzing MRTs

Applications of MRTs in other fields are often nwatied by understanding how things co-occur,
which focuses on the relative relationships of oase variables (generally species of plants or
animals) within and across MRT leaves (e.g. twagsemay be very prominent in leaves
characterized by certain environmental conditiomsrarely found in others, so they are likely to
be found together) (Davidson et al., 2010; De’&002; Herzschuh and Birks, 2010; Larsen and
Speckman, 2004). In this context studies often éxamopulation composition at each split in
the MRT to identify the species that are most iefitial in each partition and also perform

within-leaf calculations to determine “indicatoresies”. Another common use of MRTs is to
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use splits to delineate geographic regions eithgrguatitude and longitude directly or via
climate or ecosystem variables that can be mappadnon, 2012; Hamann et al., 2011; Salonen
et al., 2012). The first type of application is yé&raves-focused and the second type gains most

information from the splits.

A major difference between using MRTSs to explaipyation composition or climate effects vs.
applying them to MOEA tradeoff sets is that MOEAdeoff sets exist to facilitate the

elucidation and navigation of preferences. Useve values that determine which performance
tradeoffs are acceptable and also have opinionstdbe decisions that comprise a portfolio.

This suggests two approaches to analyzing MRTsrgatwefrom MOEA tradeoffs that are
valuable because of the ability to navigate retatiops between leaves and splits (objectives and

decisions) iteratively.

2.2.5.1Leaves-first analysis

After visual inspection of all leaves, users wa &ble to identify a subset that represent
preferred patterns of performance tradeoffs and taeiew the splits (portfolio decisions) that
led to the leaf. Referring back to Figure 1, a ubat values minimization of water-use
restrictions far more than avoidance of buildingirstorage would focus on Leaf 1. Once Leaf 1

is identified, the user would learn that reachimg leaf requires at least a 50 MCM reservoir.

2.2.5.2Root-first analysis

Without the benefit of MOEA tradeoff sets to fat@te in-depth discussion of performance
tradeoffs, water utilities typically focus on deois preferences when crafting portfolios to test
during long-term planning studies (Smith et al1&p In this paradigm, an MRT user would
start at the root of the tree and at each splérdahe the preferred value of a decision.
Following decision preferences down the tree to@mnmore leaves would reveal how decision
preferences affect performance tradeoffs and patbnihelp users see where compromises are
needed to avoid unacceptable performance. The MHAIgure 1 would demonstrate to a user
that if they wanted to avoid a large reservoirk{tigranch) and not enact conservation (right
branch), they could expect relatively frequentdecice of water-use restrictions. This likely

would not be considered desirable.
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2.2.6 Software

This study used thewvpart R package (De’Ath, 2014, 2002; R Core Team, 2046jch is

archived but still functional. Its primary functi@xecutes the algorithm described in Section
2.2.1, and the most important parameters are tihaseontrol cross validation and the
complexity parameter (CP), the stopping criterioatt tdefines the amount of error reduction that
must be achieved by a split to continue growingttee. We note our settings in the Results
section. The only functionality we altered was stendard plotting included with the package;
mvpart generates a set of bar plots for the mean obgealues at each leaf, but we replaced the
bars with boxplots to give more information. Thpasitory of data, packages, and code

necessary to reproduce this study’s results cdouel in the Acknowledgements.

3 Case study
3.1 Front Range, Colorado

The Front Range of Colorado is an urban corridotheneastern slope of the Rocky Mountains
that encompasses several mid-sized cities and sraajfer communities. Water providers in the
region rely heavily on runoff from highly variabd@nual mountain snowpack, so storage is
critical for weathering intra- and interannual wagapply fluctuations (Doesken, 2014;
Rajagopalan et al., 2009). The long-term impadt ¢hanate change will have on Colorado’s
hydrology is unclear; temperatures are expectedmbdinue increasing, but precipitation could
increase or decrease (Lukas et al., 2014). Howeespite the possibility of increased
precipitation, there is likely to be less watethe future due to the dominance of higher
temperatures (Udall and Overpeck, 2017; Woodbug}.e2012). In addition to the natural
supply variability and uncertainty from climate olge, the Front Range is experiencing the
compounding challenge of rapid population growtie tegional population is projected to
increase by 40% by 2050 (State of Colorado, 2017).

Water management in Colorado is further complicatgethe prior appropriation doctrine, a
legal framework that bases the succession of sfleamccess on date of first use (“first in
time, first in right”) (Hobbs, 2004). Farmers anteggy companies own the vast majority of
senior water rights in the state, and by 1900 rab#te water in eastern slope rivers was fully

appropriated (Eschner et al., 1983). This meartsathaities grew, they collected a mixture of
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supplies from multiple locations (including the wesa slope of the Rockies) by acquiring junior
streamflow diversion rights, building junior reseins, buying senior diversion rights from
agriculture, or buying shares in other water congzarAll long-term utility planning involves
making many decisions and balancing conflictingeobyes; on the Front Range, these inherent
difficulties are exacerbated by rapidly increasiiegnand, highly uncertain impacts of climate
change, complex regulations, and contentious saolenvironmental issues. This context is

the basis of our MOEA case study, briefly descriimetthe next section.

3.2 Eldorado Utility Planning Model

The Eldorado Utility Planning Model was designeddzhon input from 11 Front Range water
managers to generically capture important regioredagement features and challenges (Smith
et al., 2017). It encompasses the region surrograismall municipal water provider called the
Eldorado Utility. Eldorado is located on the east&lope of a mountain range along with eight
other water users that directly compete with thigyto divert and store water. Eldorado has
mostly junior diversion rights, junior storage rigtin two reservoirs that it owns, and also has
shares in a water wholesale company that it takesfca reservoir owned by that entity. One of
Eldorado’s diversion rights comes from the westdope, where an additional four users impede

the utility’s access to water.
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/. potential streamflow
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Figure 2. Schematic of the Eldorado Utility Planning Modelai different users on both

slopes of the mountain range impact Eldorado’s gitdbol at bottom center) ability to collect
and divert water via their priority dates, the logas of their diversions, and the locations of

their return flows (precise diversion and retuowfllocations are indicated by arrows). Each user
or right in the diagram has a priority date asdedavith it where applicable and is listed in

Table 1. Reprinted from Smith et(@018 with permission from ASCE.
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Table 1.Detail for water users in Eldorado Utility Plannikgpdel. Abbreviations refer to those

found in Figure 2. The order of users going dowchdable column corresponds approximately

to reading left-to-right on the diagram. Boldedrssare particularly relevant to the results

presented in Section 4. Superscripts in the talelelefined as follows"Res = Reservoir;

BMCM = million cubic meters*KAF = thousand acre fedtAg = Agriculture;*cms = cubic

meters per seconbfs = cubic feet per second. Reprinted from Srriitl €018 with

permission from ASCE.

Magnitude of

Magnitude of

Abbr. | Name Rights Abbr. | Name Rights
SB Southern Basin varying flow XR External Res | varying vol
. Ag2 Irrigation | 24.7 MCM
WC | Western City n/a A2R Co. Res (20 KAF)
Western City 24.7 MCM°
WCR Red (20 KAFO) Ag2 | Ag2 User n/a
4.3 cm§ (150 0.28 cms (10 cfs);
WAg | Western A§ User | cfs) EU E![(ia:i('irado 0.34 cms (12 cfs);
seasonal y 0.42 cms (15 cfs)
. Wholesaler 123.3 MCM
PP Power Plant varying flow WS2 Res 2 (100 KAF)
TransMtn Instream Flow ,
TMD Diversion 2.2 cms (80 cfs) ISA A varying flow
varying vol, , 1.0 MCM (800
WSR | West Slope Res 2.2°cms (80 cfs) GP | Gravel Pit AF)
616.7 MCM Industrial .
WS1 | Wholesaler Resl (500 KAF) Ind User varying flow
11.1 MCM (9 1.4 cms (50 cfs)
NR North Res KAF) Ag4 | Ag User 4 seasonal
SR South Res 9.9 MCM (8 IsB Instream Flow 0.42 cms (15 cfs)
KAF) B
Ag3 | Ag User 3 1.4 cms (50 cfs) XEC Exte_r_nal Farms n/a
seasonal & Cities
Agl | AgUser 1 1.4 cms (50 cfs) Ag5 | AgUser5 2.9 cms (100 cfs)
seasonal seasonal

The model incorporates a wide range of water rigates to capture the temporal complexity

created by prior appropriation. It also has greatial complexity to reflect the fact that in

Colorado, water is constantly being diverted framd aeturned to the stream. Overall, there are

five distinct basins in the model, each with aatnlow input site at its headwaters. The model

was designed such that, under historic hydrolodgpmado’s existing system and sources could
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meet 100% of current demands with only rare needeftrictions. Different future streamflow
scenarios that alter timing and volume of streamflequire the utility to take action in order to
meet growing demands. These scenarios and demandestribed in Section 3.4. For more
detailed model and optimization information ref@Smith et al (2018).

The Eldorado Utility Planning Model was built usitige RiverWare modeling software (Zagona
et al., 2001). RiverWare’s advanced capabilitiedifated our use of prior appropriation water
allocation and enabled us to manage ownership t@ntlarough its accounting functionality.

The model uses over 150 custom rules to operatatitieate relationships between objects,
users, and accounts, and is an example of thedfiodmplex decision support system that many
utilities have incorporated into their planning Qaalie, 2004).

3.3 Problem formulation

The problem formulation includes 13 decision levanid 7 objectives which are briefly
described here.

3.3.1 Decision Levers

Eldorado Utility has a total of 13 decision levaxailable to enable it to meet growing demands
with potentially more challenging streamflow coimalits. Some increase the system’s operational
flexibility, some involve acquiring or freeing upater, and some develop new storage. They are
briefly described below and summarized in Tabl&/Bere applicable, lever descriptions include

a reference to the relevant user in Figure 2.

3.3.1.1Enhancing operations

Certain water sources in Colorado are reusablesatarefully monitor their return flows from
unconsumed water so that they can re-divert reasahlrn flows to meet demands. This is only
possible by legally acquiring the right to exchatlgewater from downstream to upstream and
only works well with strategic storage options. @htevers help Eldorado take advantage of
reusable return flowd$Exchange determines whether the legal right is acquirestdoe reusable
water in a reservoir owned by Eldoradl@aseVol xgres determines the amount of dedicated
exchange storage space Eldorado rent in the ExtResa(XR); and.easeagres determines
whether Eldorado is allowed to use available spaée?2 Irrigation Co. Res (A2R) to store

reusable water.
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3.3.1.2Increasing supply

There are three ways that Eldorado can gain ateéasw” supplies. The utility can acquire
portions of water rights of other users in the nipilean buy shares of water companies in the
model, and it can create water through conservationcreasing distribution efficiency.
Eldorado may purchase up to 20% of the rights & Aiger (Ag3) Rightsags) and Industrial

User (Ind) Rightsnaustriar)- Ag3 rights are very senior and may be storedabeiinot available
year-round; Industrial rights are mid-seniority andst be directly diverted from the stream, but
are available year-round. Eldorado may buy shaoes €ither Wholesaler (WS1, WS2)
(Shareswnolesaler) Or Ag2 Irrigation Co. (A2R)$haresagy). ThroughShar esnerrupiinie the: utility

may also execute a contract for access to A2R shha¢ is triggered when Eldorado’s storage is
severely depleted. Acquiring water from any of thesurces will draw water away from
regional agriculture and industry and potentiallsrdpt those communities. Finally, Eldorado
may enact none, moderate, or aggressive consamnvagasuresgonsFactor) or increase
distribution efficiency DistEff) by up to 3%.

3.3.1.3Building storage

There are three opportunities for Eldorado to iasesthe amount of storage it owns. The utility
may expand the existing South Res (SR) to helg $ioth existing and new eastern slope and
western slope wateExpandVol syuhres). Eldorado can build a new West Slope Res (WSR) to
store its existing western slope diversion ridghui[dVolwessoperes); this is a very challenging
proposition because of regulatory, social, andremvinental considerations. Lastly, the utility

can develop gravel pits (GP) downstream of itsrrepwint to capture reusable flowGR).
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Table 2. Summary of Eldorado Utiltiy decision levers. MCMnillion cubic meters; AF = acre-

feet.

Decision | Description | Units Range |  Incremept

Enhancing Operations

Acquire right to exchange reusable .
Exchange return flows to NorthRes 0-1 Binary

Pay owners of XRes to lease

, - MCM 0-37 0.12
LeaseVolxres dedicated space that can facilitate (AF) | (0-3,000) (100)
Exchange
Pay Ag2 Irrigation Co. to store
Leaseagores water in any available unused 0-1 Binary

space; 0 = off, 1 = on

Increasing Supply

Purchase a portion of Ag3’s seniar

RIghtSags diversion right % 0-20 1%
. , Purchase a portion of Industrial 0 i 0
RIGNtSinausrial user’s mid-seniority diversion right & 0-20 1%
Purchase additional shares of

Shar eSpholesaler Wholesaler water share§ 0-6,000 10

Sharesagy CP:L(;rch\lI:tseer shares of Ag2 Irrigation shares 0 - 10,000 100
Negotiate agreement with Ag2

Shar eSinterruptible Irrigation Co. for optional supply | shareg 0 - 10,000 100
leases

Reduce starting per capita demand
through conservation measures; () =
ConsFactor no change, 1 = 10% reduction, 2 & 0-2 1

20% reduction

Improve distribution efficiency by
reducing unaccounted-for water

DistEff . ) . % 90 - 93 1%
(e.g. fixing leaks, improving
metering, etc.)
Building Storage
MCM 0-2.47 0.12
ExpandVolsouhres | EXpand SouthRes (AF) | (0-2.000) (100)
MCM 0-123 0.12

BuildVolwestsioperes | Build West Slope Res (AF) | (0 - 10,000) (100)

Develop gravel pits to store
reusable return flows downstream .
GP of the city; 0 = not developed, 1 =| 0-1 Binary

developed
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3.3.2 Objectives

Brief qualitative descriptions of the seven objessi are given below. For further detail and

equations, please refer to the Appendix.

The first three objectivefestLevl, RestLev2, andRestLev3, seek to minimize the total number
of years (within the 25-year simulation) that Elado goes into three restriction levels of
increasing intensity. To comply with Eldorado’s mnt reliability policy, the utility can only go

into each level 5, 1, and O years out of 25, resypey.

The fourth objectiveMissedOpp, minimizes the average annual volume of waterttieautility
“misses”, i.e. when timing of demand or availalilif storage space prevent Eldorado from
capitalizing on the full amount of its water righ®ptimizing how efficiently Eldorado uses the

water it has helps prevent wasteful acquisitions.

Objective five,New Supply, seeks to minimize the average annual volume témieldorado
uses from new sources. Though the utility does needquire or create new water to meet

growing demands, they do not want to take more they need for future water security.

The sixth objectiveApril1Storage, maximizes carryover storage of the lowest stotagennual
demand percentage recorded during the 25-year aiiol April 1 is the approximate date when
reservoirs would be at their lowest levels befqgréng) runoff begins to fill them again and is a
measure of carry-over storage. Compared with tsigicdons-based objectives, this captures a
longer term reliability signal because it evalugiegormance based on the worst-performing

year of the simulation.

Finally, NewStorage minimizes the volume of newly-built storage witlgach portfolio. Because
storage is difficult to permit and socially and goamentally contentious, Eldorado seeks to
carefully consider the number and size of storaggepts it pursues. The combination of this and
the NewSupply objective provide a cost-like signal and allow thity to consider planning

policy on a broader level (Smith et al., 2018).

3.4 Scenarios

The optimization runs using the Eldorado Utilita®hing Model assumed a buildout demand

based on 40% population increase by 2050 (StaBolirado, 2017), when the simulation time
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horizon starts. The demands exhibit single fanelidential patterns, i.e. use increases
substantially during summer months when lawnsraigated. The irrigation demands go up
slightly during dry years and are affected by covestton and distribution efficiency levers, but

the baseline population demand does not changeghouit the simulation.

Because future streamflow in Colorado is highlyartain, the set of studies associated with this
model use several hydrologic scenarios. The saenheglevant to this article are the 1°C- and
4°C-warmer futures, which were chosen based ot Range climate change study
(Woodbury et al., 2012). The perturbed hydrologgdusionthly changes (i.e. deltas) from that
study and generated sets of stochastic headwetansgtow. The stochastic simulation first
generates annual streamflow timeseries using a K¥$Bmpling approach (Lall and Sharma,
1996), which are disaggregated to monthly flowsigs$he proportional disaggregation method
of Nowak et al (2010). The monthly deltas from flee warming scenario from Woodbury et al
(2012) are then applied.

3.5 Optimization implementation

We used the Borg MOEA for this study (Hadka anddR@@13), which tests have shown to
perform similarly or favorably compared to otheatstof-the-art algorithms on difficult
benchmark problems (Reed et al., 2013; Zataraiaz8galkt al., 2016). The Eldorado Utility
Planning Model embedded in the search loop simsilde supply and usage dynamics of
Eldorado Utility and other regional water usersrd®® years (from 2050 to 2075) at a monthly

timestep. Portfolios were tested as fully-impleneentonfigurations of Eldorado’s system.

Performance of each portfolio was evaluated adesssydrologic traces, each distributed to a
separate computing core of an Amazon Web Servitzesgi& Compute Cloud (EC2) instance
(Mathew and Varia, 2014). Each distributed simolatiook approximately 20 seconds. This
relatively long simulation time prompted us to lirsearch to 5,000 function evaluations.
Though this number of evaluations is lower than dianany other MOEA studies, the resulting
tradeoff set is sufficiently large and diverse &rbnstrate the MRT method. We used the

default Borg settings except for changing initiapplation size from 100 to 50.
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3.6 Heuristic analysis of Eldorado optimization tradeofs
3.6.1 Sample analysis using parallel axis plots

Figure 3 presents a set of Eldorado Pareto-opfmafolios from a 1°C-perturbed optimization
run. We will use the set to facilitate readers’ erstanding of MOEA tradeoff sets and describe
how the Eldorado Utility Planning Model capturesiirRange, Colorado, water management
tradeoffs. The figure also offers an opportunitgémonstrate the challenge of heuristically
analyzing the results of MOEA-assisted optimizatibne performance and decision tradeoffs of
the set of 961 portfolios are presented using [@kis plots, which are a visual analytics
technique commonly used in multiobjective optimiaatstudies (Herman et al., 2014; Kasprzyk

et al., 2013; Watson & Kasprzyk, 2017).

Objectives
49 MCM 34.1MCM 15.8 MCM
12yrs 3yrs 1yrs (3,957 AF) (27,611 AF) 23% (12,800 AF)
[ I A Years in Level 1
Restrictions
ms
|
= |
£
& m
o
Noncompliant
Oyrs Oyrs oyrs 0.5 MCM 49 MCM 146% 02MCM
(425 AF) (3,951 AF) (200 AF)
Level 1 Level 2 Level 3 Missed New April 1 New
Restrictions Restrictions Restrictions Opportunity Supply Storage Storage
Decision Levers
3.7 MCM 2.5 MCM 123 MCM
On (3,000 AF) On 19% 20% 6,000 10,000 10,000 Aggressive 93% (2,000 AF) (10,000 AF) On

Less

off 0MCM Off 0% 0% 40 0 0 None 90% 0 MCM 0 MCM off
(0 AF) (0 AF) (0 AF)
Exchange Lease Lease Ag3 Industrial ~ Wholesaler Ag2 Interruptible Cons Dist SouthRes ~ WestSlope  Gravel Pit
XRes Ag2Res Rights Rights Shares Shares Shares Factor Efficiency  Expansion Res Vol

Figure 3. Parallel plots of the tradeoff set resulting froptimizing the Eldorado Utility

Planning Model under 1°C-warmer hydrology. Rtshows the relationships between different
performance objectives. PI(i) shows the portfolios of decisions that resultetha

performance from plda). Grey portfolios do not comply with the utilityteliability policy

(which allows up to 5, 1, and 0 years in Levelg,land 3 restrictions, respectively); compliant

portfolios are colored based on years in Levelstriions.
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In Figure 3a, each of the seven performance obgxis represented by a vertical axis. Each of
the 961 portfolios is represented by a segmentedthiat crosses each axis at the level of
performance it achieves in that objective, wheossing lower on an axis denotes better
performance. (Note that April 1 Storage is the anBximization objective, so even though
higher levels of storage are better, that is spresented by lower positioning on the axis.) The
portfolio lines are colored based on whether thyaly with Eldorado’s reliability policy (grey
portfolios are noncompliant) and then the numbeyeairs they were in Level 1 restrictions, with
dark blue corresponding to zero years at the bottbtine leftmost axis. The “violins” on the
axes show portfolio densities to clarify trendparformance that can be obscured due to
overlapping lines. Figure 3b is oriented identicédl Figure 3a except that there are 13 axes —
one for each decision lever. Every portfolio lindHigure 3a has a corresponding line in Figure
3b that conveys the amounts or levels of all ofdeeisions within the portfolio. The lower a line

crosses an axis in Figure 3b, the less of thasdethas been chosen.

In Figure 3a we can see relationships betweenlijexiives. Color enables us to tell that all of
the dark blue portfolios with zero years in Levekstrictions have medium to high levels of
New Supply (fifth axis from the left), medium toghilevels of April 1 carryover storage, but
may have anywhere from 0.2 to 15.4 MCM (200 to @@,BF) of New Storage (rightmost axis).
This means that to minimize years in Level 1 re8tms, it is imperative that Eldorado obtain
new water sources but may choose to build or akawgk amounts of new reservoir storage.
However, portfolios that do not build much New &ige perform more poorly in April 1 Storage
and tend to require greater volumes of New Suplgtis shows an important tradeoff within the
Eldorado model as well as on the Front Rangetiesloften have to choose between meeting
growing demands with new supplies that come fronseovation and other users’ shares and
rights, which may be socially and economically gigive to communities, and relying on

contentious, expensive infrastructure that is clifti to permit.

Filtering the portfolios (here, through color) basm reliability compliance represents non-
subjective criteria that a utility might use to belparning how portfolios’ decision attributes
relate to performance. Working up from the bottdrithe Wholesaler Shares axis in Figure 3b

we can see that as these increase, performanevel L restrictions improves. The same is true
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for increasing levels of conservation — only greertfolios with three or more years in

restrictions plot at the bottom, indicating thataomservation was enacted.

3.6.2 Limitations of heuristic analysis

Figure 3 was designed to demonstrate the speaiitgpdescribed in the paragraphs below it.
That is, the order of the axes and the use of alpported a narrative. This demonstrates a
fundamental problem with how many-dimensional detaare presented that is exacerbated by
the existence of user preferences: shapes, caloisiata orientation all influence perception of
underlying system dynamics.

Visually inspecting the parallel plots revealedfusmformation about tradeoffs and trends in
two decision levers. Beyond this point in a heugiahalysis an issue arises: what is the next
move? A manager could ask what would happen isétevas filtered to exclude portfolios that
haveany instances of restrictions. Another idea woulddexclude from the compliant set any
portfolios that build a contentious West Slope Resie. Or we could try to focus on portfolios
that have lower amounts of New Storage, but thenvio Figure 3a shows that there is no
natural break point at which to segment the pdd$oand thus the differentiation between levels

of performance would be subjective.

The logic effectively applied to the early stagéthe heuristic analysis is the result of the
authors’ years of expertise with MOEA tradeoff se@rallel axis plots, and the Eldorado Utility
system; not every MOEA user could do this. Despéteing comfort and experience with the
tradeoffs, the array of paths we suggested abaweshow quickly the analysis can become
ambiguous and potentially counterproductive: thestjons that managers try to answer with the
tradeoff set and the order in which they are ast#deavily influence perceptions which could
then be difficult to dislodge despite re-orderitige conditions on which the results are filtered
may be based on preferences that are not sharaitigmrties involved in a planning process
(e.g. minimizing New Storage may align with judgenseabout whether reservoirs are
environmentally responsible). Even if analysesit@rative, relying heavily on conflicting

preferences to orient filtering may increase usisis on different positions.

Finally, because of computational limitations, mostctical applications of MOEAs to WRSA

problems will require users to cull hydrology. Hoxee, decisions that perform well in one set of
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potential hydrologic futures may or may not be sthgiven different conditions. When MOEAs
are used for planning under deep uncertainty, plaltiounds of optimization can be used to
address shortcomings inherent to scenario-speptimization (Eker and Kwakkel, 2018;
Watson and Kasprzyk, 2017). The issues describedeatompound when multiple tradeoff sets

are generated.

The list below summarizes the general limitatiohasing a heuristic approach alone to analyze
MOEA tradeoffs:

visual representations of many-dimensional datalue/subjective decisions that can

influence perceptions of system dynamics;

- humans are not good at deciphering patterns aotasy dimensions that could include
complex interactions;

- predetermined decision and performance preferanegsheavily influence heuristic
analyses and prevent users of MOEA tradeoff seta eeking or learning fundamental
system dynamics;

- different users’ perceptions of system dynamicsltesg from subjective heuristic
analyses could exacerbate conflict; and

- without objective information about decision andfpenance dynamics it is more

difficult to draw conclusions when working with niple tradeoff sets.

MRTs are a simple, automated approach to analyi@gA tradeoffs that produce multiple
insights simultaneously. Including them alongsidaristic analyses of tradeoff sets provides a
neutral and repeatable foundation that can claeylts and orient additional investigations. In
the next section we present the results of using $Mer feature selection and describe how

their structure and insights can enhance systentraddoff understanding.

4 Results

We performed two separate optimizations of the Edo Utility case study — one for the 1°C-
perturbed hydrology and one for the 4°C — and eckah MRT for each set of tradeoffs. We first
describe the results of an MRT generated from tiederturbed portfolios described in the
previous section, and follow that discussion withMRT from a 4°C-perturbed optimization.

Generating two trees helps to validate the use@MRT method on tradeoffs from the
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Eldorado Utility case study and enables us to gduttional insights into the system behavior by

comparing them.

4.1 MRT for 1°C-perturbed tradeoff set

The plot of CVRE vs. tree size shown in Figure 4weoduced by fitting an MRT to the
Eldorado Utility 1°C-perturbed tradeoff set desedbn Section 3.6. We allowed the MRT
algorithm to build a large tree based on a CP@dD. A very small CP value allowed us to
analyze the progression of CVRE over the courseanfy splits. The minimum CVRE shown
here is marked by the red dot (though the CVRE didikély continue to decrease very slowly
as the tree grew) and the tree size that corresptontthie Min + 1SE rule is marked in yellow.

Tree Size vs. Error for 1°C-perturbed MRT
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Figure 4. CVRE vs. size of MRT for 1°C results from Eldorddblity optimization.

At no point does the CVRE start to increase ofstagnate, so choosing the tree size for this

data set is more subjective. The choice made ferstiidy was to require that in order for a split
to occur it must meet an error reduction threslodlat least 1% of the root error, so the CP was
set to be 0.01. This corresponds to a tree witledves (marked by the vertical dashed line) and

a maximum tree depth of 5 splits. The value wasehdeuristically by balancing simplicity,
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descriptive value, and meaningful interpretatiohef criterion. The next “round” CP value

would be 0.005 and result in an unwieldy 28-leaétr

Figure 5 and Figure 6 present the left and righhbhes, respectively, of the MRT generated
from the 961 portfolios in the 1°C-perturbed traffiset described in Section 3.6. We will first

orient the reader to the features of the tree hed tiscuss different approaches to analyzing it.

Multivariate Regression Tree, 1°C-perturbed Hydrology

(left branch)
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Figure 5. Left branch of the multivariate regression treeegated from the Eldorado Utility 1°C

optimization tradeoffs.
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Multivariate Regression Tree, 1°C-perturbed Hydrology

(right branch)
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Figure 6. Right branch of the multivariate regression treeegated from the Eldorado Utility

1°C optimization tradeoffs.

At the top of the tree halves in Figure 5 and Fegbinve see that the first split is based on the
conservation level incorporated into each porttdio conservation is ConsFactor = 0, moderate
conservation is ConsFactor = 1, and aggressiveecaaison is ConsFactor = 2. The left branch
includes portfolios where ConsFactor is greaten thraequal to 1.5, i.e. portfolios that have
aggressive conservation. The number reported iaweege between the levels of decision
above and below the split. As another examplepfalg the left branch, the next split is on the
volume of West Slope Res. To the left are portiotimat have reservoirs up to 6.5 MCM (5300
AF), and to the right go the portfolios that hagearvoir volumes starting at 6.7 MCM (5400
AF). The granularity of the split value dependstomincrement of a decision lever (presented in
Table 2).

Following splits down to the leaves, each leafdast of boxplots: one for each of the seven
objectives denoted by the color and ranges showimeitegend. The order of the boxplots is the
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same as the order in which the objectives werediscribed, which is also their order in Figure

3a. And, like the parallel plots, the lower a batps positioned within the plot area, the better

the performances of the portfolios within the I&die EV value at the bottom indicates that the

tree explains 70.4% of the performance objectiveanae within the data set.

4.1.1 Analyzing the tree: leaves-first

Our first analysis will start at the leaves, coesithe ranges of performance for the objectives,

assert a set of priorities to direct focus on glsiteaf, and then follow the branches up to the

root to see what decision rules produced that Fe@afexample, Eldorado Utility managers (and,

by extension, managers in the Front Range who therbasis of the Eldorado model) may want

to prioritize reliability-related objectives (Smiét al.,

2019). Given that criteria, leaves thateha

boxplots that are very low with small ranges in fin& three objectives (blue, grey, and red)

would contain portfolios of interest. Examinatiditloe leaves in Figure 5 and Figure 6 shows

that there are three that meet that boxplot cordigon- leaves 1, 2, and 6 (see Figure 5).

Focusing on leaves 2 and 6, which are superioetd L in years in Level 1 Restrictions, will

help illustrate the value of MRTs and connect thhemecognizable tradeoffs. Figure 7 provides a

close-up comparison of the two sets of boxplots.

Aggressive Conservation
West Slope Res < 6.6 MCM
(5,350 AF)

> 5,150 Ag2 Shares

> 7% Industrial Rights

(a) (b)
T4 o <+
W= T
: = B
1
'I'E T m
. X X 1 . X X 1 L
1°C Leaf 2 1°CLeaf 6

Aggressive Conservation
West Slope Res > 6.6 MCM

(5,350 AF)
> 6,250 Ag2 Shares

Figure 7. Comparison of two leaves from the 1°C MRT. Note thath leaves incorporate

Aggressive Conservation and have a very similarbermof Ag2 Shares.

The decision rules that lead to Leaf 2 are: aggresonservation; a West Slope Res smaller
than 6.6 MCM (5350 AF); 5,200 or more shares ofAge Irrigation Co.; and at least 7% of

Industrial User’s water rights. None of the poiitislhave any incidence of any level of

restrictions, they have moderate to high volumeslisfedOpp water, a very high range of

NewSupply (the highest range of all the leaves)ioma-high April 1 carryover storage, and

28



moderate to low volumes of NewStorage. Despiteritazero years in restrictions, the April 1
carryover storage objective is not as high (i.eifmmned as low) as might be expected because

the portfolios within the leaf have relatively lamounts of NewStorage.

As shown in Figure 5 and emphasized in Figure & ptith to Leaf 6 includes aggressive
conservation, a West Slope Res 6.6 MCM (5350 ARx@er, and at least 6300 Ag2 Shares.
The performance ranges in Leaf 6 are notably diffethan in Leaf 2. Among the portfolios in
Leaf 6, there is one occurrence of Level 1 restmst and one occurrence of Level 2 restrictions,
moderate volume of MissedOpp water, moderate t NigwSupply, high to moderate volumes
of April 1 carryover storage, and high to very higlumes of NewStorage. Incorporating the
larger West Slope Res reduced Leaf 6’s relianch@maSupply (e.g. via the Industrial Rights
required in Leaf 2), but the portfolios are therefmore likely to have large amounts of
NewStorage. The patterns in these two leaves déehtvadeoff between NewSupply and
NewStorage discussed for the parallel plot in Féga. The ability to confirm these MRT results
with surface-level visual analysis provides morefmence in the MRT findings that are harder
to deduce heuristically, such as the importanaelafge amount of Ag2Shares, which shows up

in both leaves.

Emphasizing leaves 2 and 6 as superior to othediability objectives does not preclude other
leaves and other sets of decisions from contaiporgfolios that match Eldorado’s performance
priorities. The leaves simply indicate that afteq@entially splitting the portfolios based on 4dll o
the relationships within the tradeoff set, theseipalar sets of decision levers are most likely to
result in appealing portfolios. Furthermore, theisiens in the paths to highly reliable leaves
must still be accompanied by actions in the otlesision levers; there is just more flexibility in

the values for the levers not represented in splits

4.1.2 Analyzing the tree: root-first

Analyzing the tree starting from the leaves upescdbed in the previous section is a way of
assertingoerformance preferences and understanding which decisions are likely &all®® good
performance. Starting from the root and working d@Mows users to understand the impact on

performance oflecision preferences.
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Using the tree branch in Figure 6, we can demotesthe four steps of a path that an Eldorado
manager might take down the tree if a general pafmew water sources but limited reservoir

expansion was preferred.

1. At the first split, a manager may choose to gdoright because she or he does not
want to have to rely on aggressive conservatiandet performance goals.

2. At the next split, a manager may choose to gadetiuse Wholesaler Shares are a
reliable water source that does not require infuastre.

3. Next, a manager may go left to avoid a large WegieSRes because of cost,
permitting, etc.

4. Finally, the manager may go right to see how badthtcomes could be if no

conservation was enacted.

Leaf 11 is the outcome of applying these decisiafigpences, and the boxplots reveal that they
will likely result in decent performance in NewSlppnd NewStorage but poor performance in
the other objectives. This manager would have Ehthat the combination of decisions in this
path will likely result in non-preferable perfornm@mnregardless of the other 10 decisions in the

portfolio.

4.1.3 Reviewing MRT insights

The insights gained from MRTs would likely have ek ficult to obtain through heuristic
approaches, but they should also be verified (lmaplits are not guaranteed to be meaningful)
and built upon using different types of analysese ©Option is to use interactive visual analytics
software such as Tableau (Jones, 2014) to managlly MRT splits and further explore
portfolios within leaves of interest. As each sgbitwvn a branch is applied to the dataset, for
example by filtering on decision levers, rangesne or more objectives should shift indicating
that the split had meaningful impact. Figure 8 jles an example by revisiting the parallel plots

used in Figure 3.

30



(a) Objectives
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Figure 8. Parallel plots from the 1°C Eldorado Utilty tradeoff set, with the portfolios
contained within Leaf 2 of the 1°C MRT emphasized.

Figure 8a and Figure 8b are oriented almost exéikéythe plots in Figure 3; the only difference

Is that in this figure, color is used to distindutbe set of 27 portfolios from Leaf 2. In Figuie 8

the pattern and ranges of the Leaf 2 portfoliosfqgrenance across the seven objectives matches

the boxplots from Figure 7a. The ranges of Congffavtest Slope Res, Ag2Shares, and

Industrial Rights in the decision levers in Fig8tereflect the splits, and red dashed axis lines

highlight the restricted ranges of those decisitmgight of the remaining nine decision

dimensions, there is considerable variety in paaémalues to accompany the constrained
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decisions. The levels of Wholesaler Shares arestlomaversally very high, though, so this
decision lever correlated closely with a split lthea another decision lever and the large
numbers of Wholesaler Shares are contributingegtiferred performance though they were

not explicitly represented in the MRT.

Other types of visualizations such as pair-wisétscalots between individual decisions and
objectives or correlation matrices between objesti@nd decision levers may also be helpful in
MRT verification. If there are no identifiable rétanships between the decision levers
represented in splits and one or more objectives;sushould be cautious in their interpretation
of MRT results.

4.2 MRT for 4°C-perturbed tradeoff set

All previous discussions of tradeoffs, portfoliasid trees have referred to a set of portfolios
generated from optimizing for a 1°C-warmer futtP&nning in consideration of multiple
possible future scenarios is beneficial in ands#lf, and it also increases the impact of MOEA-
based MRTs. Figure 9 and Figure 10 present an MRiErgited from a set of portfolios
optimized for 4°C-perturbed hydrology. Tree sizeswatermined by using the same logic that
was described for the 1°C tree in Section 4.1 hadlL®6 error reduction criteria was used again.
After briefly describing a few features specificthe 4°C tree, we discuss findings from

comparing the two trees.
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Multivariate Regression Tree, 4°C-perturbed Hydrology

(left branch)
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L F:
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Figure 9. Left branch of the multivariate regression treeegated from the Eldorado Utility 4°C

optimization tradeoffs.
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Multivariate Regression Tree, 4°C-perturbed Hydrology
(right branch)
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Figure 10.Right branch of the multivariate regression treeegated from the Eldorado Utility

4°C optimization tradeoffs.

The root error and total number of portfolios aneeg at the root node of the MRT in Figure 9
and Figure 10. Splits, leaves, boxplots, colorg, @bjective ranges are all oriented the same as
in Figure 5, but note that the objective rangedéferent. This is especially relevant in the ffirs
three objectives (years in levels of restrictiotisg more challenging hydrology resulted in more
frequent restrictions and fewer portfolios with laweidence of curtailment. The EV indicates

that the tree explains 71.2% of the performancemae found within the tradeoff set.

If we repeat the same leaf-first exercise fromif@ tree, where we determined that the
performance preference was to have minimal yeaafl three levels of restrictions, that criteria
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reduces viable leaves down to two: Leaf 1 and Bdabm Figure 9. The decision path to Leaf 1
includes aggressive conservation, at least 4060l&%aler Shares, a West Slope Res less than
4.3 MCM (4350 AF), and at least 7% of IndustriakUsrights. The splits for Leaf 3 are, like
Leaf 1, aggressive conservation and at least 4060l&¥aler Shares, but then instead of a small
West Slope Res and a percentage of Industrials;igietaf 3 includes a West Slope Res at least
5.4 MCM (4350 AF) in volume. A comparison of theotWeaves shows that they exhibit the
same NewSupply-NewStorage tradeoff seen in theMRT and the original parallel plots of

the 1°C tradeoffs. As noted for the 1°C tree, #yseeement the parallel plots and the 4°C tree
signals that the MRT is accurately capturing mdymmamics while providing more detailed

latent information.

4.3 Comparing MRTs

Comparing the broad characteristics of the twostpevides valuable information. First, we

note that the decisions on which splits occur amg gimilar across both trees: ConsFactor, West
Slope Res, and Industrial Rights are prominenobih lirees. In the 1°C tree, Ag2 Shares are
more important, while in the 4°C tree, Wholesaleai®s are more important. Since Wholesaler
Shares are a western slope source and Ag2 Shareastern slope, this may be indicative of a
shift in basin yields with warmer temperatures. gkaeral agreement in splits suggests that
these decisions are the most influential factois prortfolio in either scenario, and this is a

fundamental insight about the Eldorado system.

We can expand on this general decision lever aggrehy comparing sets of leaves from the
two trees. First we will compare Leaf 2 from th€lifee and Leaf 1 from the 4°C tree, as shown
in Figure 11. The decisions that lead to thesedgavith very similar objective tradeoffs include
three nearly identical splits: aggressive cons@uat medium or smaller West Slope Res, and
approximately 7% or more of the Industrial rightg2 Shares in 1°C are traded for Wholesaler
Shares in 4°C.
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(a) (b)

T
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Figure 11.Comparison of Leaf 2 from the 1°C MRT and Leafdnirthe 4°C MRT. Note that
Aggressive Conservation, West Slope Res, and InduRights have identical or similar values
in both leaves.

Now compare Leaf 6 from the 1°C tree and Leaf &fthe 4°C tree in Figure 12. Like the
previous comparison, the patterns of objectivegrerances are similar, and they share two
almost identical splits: aggressive conservatiahrmedium to large West Slope Res. Again,
Ag2 Shares in 1°C are replaced by Wholesaler ShiaC.

(a) (b)

o o T
T T
T |l o
Aggressive Conservation ':' o ! ':' Aggressive Conservation
West Slope Res > 6.6 MCM B g 4 | E L |>4,050 Wholesaler Shares
(5,350 AF) - 1T . T g West Slope Res > 5.4 MCM
> 6,250 Ag2 Shares . H g * 1 (4,350 AF)
A . J- [

1°CLeaf 6 4°CLeaf 3
Figure 12.Comparison of Leaf 6 from the 1°C MRT and Leaf@nrthe 4°C MRT. Note that

these leaves both incorporate Aggressive Conservatid a moderate-to-large West Slop Res.

The 1°C- and 4°C-perturbed hydrologies are sulisigntlifferent in runoff timing, magnitude,
and overall annual hydrograph shape. The presdrmesdapping decisions across the two

hydrologies for two fundamental planning strategiasimizing NewStorage in Figure 11 vs.
minimizing NewSupply in Figure 12) suggests thathestrategy corresponds to a set of core

decisions and that these decisions are robusividearange of futures.
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5 Discussion

The previous section focused on interpretation 8T, but we also wish to address larger

implications of their use in both WRSA practice aadearch.

5.1 Context for incorporating MRTSs into tradeoff analyses

MRTs offer an unbiased and repeatable method aQuUdiOEA tradeoff sets to learn about
fundamental system dynamics and gain detailednmétion about which decisions are likely to
have the most impact on system performance. Whdse are valuable contributions, an MRT is
not a substitute for in-depth exploration of a éaffl set and the information it provides should
be combined with system knowledge to ensure aceimtdrpretation. Ultimately, MRTs are a
promising tool to orient and enhance other typesanfeoff set analysis, all of which require

technical skills and expert reflection to use prope

5.2 Building on MRT results in practice

Generating and interpreting MRTs can result in amédntal system insights as demonstrated in
Section 4, but the most important benefits arevédrirom the different ways that the predictive
capabilities of the trees can be used. For exaroplee promising leaves are identified,
managers can build on the core strategies withawvihl to re-run an optimization. This can
facilitate diving into unexplored parts of the d#@oh space or answering policy questions that
were not formally posed in the original formulatiohthe optimization in a computationally
efficient manner. The trees can also provide gaitswers to what-if scenarios or emerging
contexts, such as if a new path is needed becaweservoir does not receive a critical permit or

a source of water that was integral to a plan ilnger available.

The ability of MOEASs to generate a set of portfelibat have approximately-best performance
for the many ways that tradeoffs can be balanced dot necessarily imply that the portfolio
chosen will ultimately be contained within it; pottos that are not strictly nondominated may
be preferred for un-modeled reasons. The insighitseg from nondominated MRTs can be used
in a targeted exploration of dominated portfolibsnterest, or MRTs could be generated using

the full set of portfolios generated by the MOEA.
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5.3 Future research

The findings and limitations of this study suggesteral interesting areas of additional WRSA
MOEA research. One idea is to use insights from BIRIlearn about a problem and constrain a
new iteration of the problem formulation to targetpecific region of objective performance.
This would be a new approach to the de Novo plapfieanework demonstrated by Kasprzyk et
al (2012). The identification of robust decisiorsass scenarios is also a promising result that
warrants structured analysis to develop a framewmduide the use of MRTs for this purpose.
Another beneficial direction would be to test MRArsdifferent types of water resources
applications, e.g. reservoir operations, to deteemvhether the results are meaningful in non-
planning contexts. We also suggest exploring theagfy and value of combining different
feature selection methods with WRSA tradeoff satsl then assessing whether they are
considered useful and usable by practitioners vawe lused or are interested in employing

MOEAs in their planning processes (Smith et al1 70

6 Conclusion

The increasing prevalence of MOEA studies in WR8gearch and practice calls for greater
attention to developing tradeoff analysis tools.i/lradeoff sets are complex and often
challenging to analyze heuristically, the high disienality and large volume of results
produced by MOEAs can be assets when combinedfeatire selection. Here we present
MRTSs, which relate performance variations withim @tross multiple objectives to distinct
subsets of specific decisions, providing users witbrmation about the most consequential

decisions and their most productive ranges.

Using the Eldorado Utility Planning Model, we demtrated multiple types of analysis that can
be performed with MRTs. Starting with the MRT lesymanagers may identify groups of
portfolios that correspond to their performancempties and learn which decision splits were
critical to arriving at promising leaves. Alternatly, starting at the top of the tree and following
decision splits down based on decision preferepo@gdes information about how these
preferences impact performance across multiplectibgss. Finally, comparing leaves from
different trees may shed light on decisions thafope well across multiple futures. Insights
gained from all of these approaches can informeptidl exploration of the tradeoff set and

prompt new policy questions.
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MRTs are versatile, simple to generate, and presssity comprehensible insights that may not
be apparent during heuristic analyses of tradesiff. § hey overcome mostly or entirely the
limitations described in this paper: the only sabje choice required in the visual
representation of the tradeoffs is the order inchwigerformance boxplots are places; they find
patterns across many dimensions in an objectivegpehtable process that eliminates the
possibility of interference from user preferendes tan skew perceptions and exacerbate

conflict; and they provide an objective basis onaitio compare multiple tradeoff sets.

Appendix
This appendix presents the underlying equationthiseven objectives qualitatively described
in Section 3.3.2.

MOEA-assisted optimization evaluates performansztan an objective function vectd(x),
wherex is the portfolio defined by decision lever valfdsscribed and defined in Section 3.3.2).

Each value in the vector results from calculatirsgparate objective,jective-
Equation A-1
F(X) = (fRestLevlf fRestLevZf fRestLev3' fMissedOpp' fNewSupplyf f;élprillStorageﬂ fNewStorage')
VxXeQQ

frestLevis frestLevz, @NUfrestLens are restrictions-based reliability measures. Rigtn levels

are triggered based on April 1 storage levels, vhie used by Front Range, Colorado, utilities
to assess their system status for the upcoming letlre model, restrictions are represented by
reductions in outdoor water use (while indoor sedver curtailed). Table A-1 summarizes the

restriction triggers and impacts.

Table A-1. Storage-based triggers and water-use inagts of restriction levels.

Current Storage-to-Long- Restriction Resulting Resulting
Term Avg Annual Demand Level Indoor Use Outdoor Use
>=75% 0 100% 100%
< 75% 1 100% 80%
< 50% 2 100% 50%
< 25% 3 100% 0%
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where “Current Storage-to-Long-Term Avg Annual Dewtiais defined as

Equation A-2

RestLey — Total Water in Storage on April 1 < 100
esthev = Long Term Unrestricted Annual Utility Demand

The three restrictions objectives are calculatefbkmwys:
Minimize the number of years that Eldorado spendsevel 1 Restrictions:

Equation A-3

frestLev1i(X) = E

Y
§ yRestLevl:l]
i=1 t

Minimize the number of years that Eldorado spendsevel 2 Restrictions:

Equation A-4

fRestLevZ (X) =E

Y
§ yRestLev,-=2]
i=1 t

Minimize the number of years that Eldorado spendsevel 3 Restrictions:

Equation A-5

frestrev3(X) = E

Y
§ )’RestLev,:s]
i=1 t

whereY is the number of years simulated péraces in the hydrologic ensemble. Expectation

notation,E[ ], denotes that the average across the traces weds us

The optimization seeks to minimize the fourth obje& fyisseqaopp, Which measures how
efficiently Eldorado uses its supplies and systemmonents to meet demands. It is affected by
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whether the utility can capitalize on reusable watel also whether Eldorado acquires an

overabundance of Wholesaler or Ag2 shares.
Equation A-6

fMissedOpp (x) =

Y
1
E VZ(Unused Sharesynotesater; + Unused Shares,nterruptiblei

=1

+ Lost Reusable Return Flows;

Objective five,fyewsuppiy, IS also minimized, and quantifies the amountr&w” water that the

utility acquires form shares and other water usexgeates through conservation.
Equation A-7

fr NewSupply (x)
(yield from:

Y
1

= E [?Z Rights g3, RightS maustriai, ShareSwholesaier» Shares,g,, ConsFactor, DistEff)i

i=1 t

The sixth objectiVefy ii1storage, SEEKS to maximize the amount of water Eldoradoima

carryover storage on April 1 of every year.
Equation A-8

Total Eldorado April 1 Storage Vol) o 100]
Avg Long Term Annual Demand .

f;lprillStorage(x) =E [ymin(

wherey,,;, denotes that the objective is calculated usingrtimemum annual value over the

course of the simulation.

The final objectivefyewstorage: MiNimizes the total volume of new storage thakoEhdo builds.
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Equation A-9
fNewStorage(X) = Z[ExpandVOZSouthRes , Bu”dVOIWestSlopeRes' (GP *0.99 MCM)]

Note that GP is multiplied by 0.99 MCM (800 AF) bhese the GP lever is on/off or 1/0, but the
volume added is 0.99 MCM (800 AF).

The optimization was subject to a single constrdhrere could be no instance of unmet indoor
demand:

Equation A-10

Cunmetpemand = 0
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